- 免費試聽
- 免費直播
1月9日 16:00-18:00
詳情時間待定
詳情
①水溶性:脂肪酸分子是由極性烴基和非極性烴基所組成。因此,它具有親水性和疏水性兩種不同的性質。所以,有的脂肪酸能溶于水,有的不能溶于水。烴鏈的長度不同對溶解度有影響,低級脂肪酸如丁酸易溶于水。碳鏈增加則溶解度減小。碳鏈相同,有無不飽和鍵對溶解度無影響。
脂肪一般不溶于水,易溶于有機溶劑如乙醚、石油醚、氯仿、二硫化碳、四氯化碳、苯等。由低級脂肪酸構成的脂肪則能在水中溶解。脂肪的比重小于1,故浮于水面上。脂肪雖不溶于水,但經膽酸鹽的作用而變成微粒,就可以和水混勻,形成乳狀液,此一過程稱為乳化作用。
②熔點:飽和脂肪酸的熔點依其分子量而變動,分子量愈大,其熔點就愈高。不飽和脂肪酸的雙鍵愈多,熔點愈低。純脂肪酸和由單一脂肪酸組成的甘油酯,其凝固點和熔點是一致的。而由混合脂肪酸組成的油酯的凝固點和熔點則不同。
脂肪的熔點各不相同,所有的植物油在室溫下是液體,但幾種熱帶植物油例外。例如棕櫚果、椰子和可可豆的脂肪在室溫下是固體。動物性脂肪在室溫下是固體,并且熔點較高。脂肪的溶點決定于脂肪酸鏈的長短及其雙鍵數(shù)的多寡。脂肪酸的碳鏈愈長,則脂肪的熔點愈高。帶雙鍵的脂肪酸存在于脂肪中能顯著地降低脂肪的熔點。
③吸收光譜:脂肪酸在紫外和紅外區(qū)顯示出特有的吸收光譜,可用來對脂肪酸的定性、定量或結構研究。飽和酸和非共軛酸在220nm以下的波長區(qū)域有吸收峰。共軛酸中的二烯酸在230nm附近、三烯酸在260~270nm附近、四烯酸在290~315nm附近各顯示出吸收峰。測定此種吸光度,就能算出其含量。
紅外線吸收光譜可有效地應用于決定脂肪酸的結構。它可以區(qū)別有無不飽和鍵、是反式還是順式、脂肪酸側鏈的情況以及檢出過氧化物等特殊原子團。
④皂化作用:脂肪內脂肪酸和甘油結合的酯鍵容易被氫氧化鉀或氫氧化鈉水解,生成甘油和水溶性的肥皂。這種水解稱為皂化作用。通過皂化作用得到的皂化價(皂化1g脂肪所需氫氧化鉀mg數(shù)),可以求出脂肪的分子量。
脂肪的分子量=3.氫氧化鉀分子量。1000/皂化價
⑤加氫作用:脂肪分子中如果含有不飽和脂肪酸,其所含的雙鍵可因加氫而變?yōu)轱柡椭舅?。含雙鍵數(shù)目愈多,則吸收氫量也愈多。
植物脂肪所含的不飽和脂肪酸比動物脂肪多,在常溫下是液體。植物脂肪加氫后變?yōu)楸容^飽和的固體,它的性質也和動物脂肪相似,人造黃油就是一種加氫的植物油。
⑥加碘作用:脂肪分子中的不飽和雙鍵可以加碘,每100g脂肪所吸收碘的克數(shù)稱為碘化價。脂肪所含的不飽和脂肪酸愈多,或不飽和脂肪酸所含的雙鍵愈多,碘價愈高。根據(jù)碘價高低可以知道脂肪中脂肪酸的不飽和程度。
⑦氧化和酸敗作用:脂肪分子中的不飽和脂肪酸可受空氣中的氧或各種細菌、霉菌所產生的脂肪酶和過氧化物酶所氧化,形成一種過氧化物,最終生成短鏈酸、醛和酮類化合物,這些物質能使油脂散發(fā)刺激性的臭味,這種現(xiàn)象稱為酸敗作用。
酸敗過程能使油脂的營養(yǎng)價值遭到破壞,脂肪的大部分或全部已變成有毒的過氧化物,蛋白質在其影響下發(fā)生變性,維生素亦同時遭到破壞。酸敗產物在烹調中不會被破壞。長期食用變質的油脂,機體會出現(xiàn)中毒現(xiàn)象,輕則會引起惡心、嘔吐、腹痛、腹瀉,重則使機體內幾種酶系統(tǒng)受到損害,或罹患肝疾。有的研究報告還指出,油脂的高度氧化產物能引起癌變。因此,酸敗過的油脂或含油食品不宜食用。
脂類的多不飽和脂肪酸在體內亦容易氧化而生成過氧化脂質,它不僅能破壞生物膜的生理功能,導致機體的衰老,還會伴隨某些溶血現(xiàn)象的發(fā)生,促使貧血、血栓形成、動脈硬化、糖尿病、肝肺損害等的發(fā)生。也是蛛網膜下出血引起腦血管攣縮,使大腦供血不足而導致死亡的重要原因之一。動物試驗還證實,過氧化脂質具有致突變性,誘發(fā)癌瘤。